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We study two-magnon Bethe states in the spin-1/2 XXZ chain. The string
hypothesis assumes that complex rapidities of the bound states take special
forms. It is known, however, that there exist "non-string states," which substan-
tially disagrees with the string hypothesis. In order to clarify their nature, we
study the large-A' behavior of solutions of the Bethe-Ansatz equations to obtain
explicit forms of typical Bethe states, where N is the length of the chain, and
apply the scaling analysis (the multifractal analysis) to the Bethe states. It turns
out that the non-string states contain "quasi-bound" states, which in some sense
continuously interpolate between extended states and localized states. The
"quasi-bound" states can be distinguished from known three types of states, i.e.,
extended, localized, and critical states. Our results indicate that there might be
a need to reconsider the standard classification scheme of wavefunctions.

KEY WORDS: Quantum spin chains; XXZ chain; Bethe Ansatz; string
hypothesis; non-string states; scaling analysis; multifractal analysis; charac-
terization of wavefunctions.

1. INTRODUCTION

Consider the spin-1/2 XXZ chain. The Hamiltonian is given by
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with periodic boundary conditions

where c j
k(k = x, y, z) are the Pauli matrices acting at site j. The Heisenberg

chain (the spin-1/2 XXZ chain with an isotropic coupling A = 1) is the first
model treated by the Bethe's famous hypothesis i.e., the Bethe Ansatz
(BA).(1) Thereby an eigenvalue problem of the Hamiltonian is reduced to
solving the so-called Bethe-Ansatz equations (BAEs). Later the method
was extended to the spin-1/2 XXZ chain with an anisotropic coupling
( \ A \ = 1 ) . ( 2 ) Many unsolved problems, however, still remain in the BA
method. Among them, the string hypothesis(1,3) may be most notorious,
which assumes that complex solutions of the BAEs take special forms. The
physical meaning of the complex solution is that the corresponding energy
eigenstate includes "bound states of magnons". In fact, several authors(4)

found evidence that the picture based on the string hypothesis fails. In par-
ticular, Vladimirov(5) obtained explicit solutions of the BAEs which sub-
stantially disagree with the string hypothesis in the two-magnon sector of
the Heisenberg chain. The "non-string states" obtained by Vladimirov
exhibit a somewhat strange behavior which is inbetween those of scattering
states and bound states.(6) The nature of such solutions has not yet been
revealed.

In this paper, we focus on the two-magnon Bethe states in the spin-1/2
XXZ chain including the non-string states. We characterize all these states
by a "function"3 f(a) in the scaling analysis (the multifractal analysis).(7)

It turns out that the non-string states contain "quasi-bound" states, which
are neither extended nor localized in a usual manner. The "quasi-bound"
states should be distinguished from critical states which appear in the Harper
equation(7) and the Fibonnaci lattice.(8,9) A critical state too is neither
extended nor localized. The crucial difference between these two types of
states is that, whereas the nature of a critical state is retained in a scaling
limit for an infinite volume, the "quasi-bound" state looks as a localized
state in the limit. But we stress again that the "quasi-bound" state is
definitely characterized with the use of the scaling analysis, and is clearly
distinguished from usual extended states and usual localized states.

The present paper is organized as follows. In Section 2, we briefly
review the Bethe Ansatz for two magnon states. Section 3 is devoted to
usual two-magnon scattering states. In Section 4, we treat two-magnon
3 We should note that f(a) is not necessarily a usual function of a, although the notation f(a)

is often used. The right object to be studied is a pair of exponents a and / which charac-
terizes the multifractality of a wavefunction. In the following, we write ( a , f ) instead of f(a).
The precise definition will be given in Section 5.
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bound states, which are classified into the so-called string states and the
non-string states. In order to get explicit forms of typical non-string states,
we study large-A^ behavior of solutions of the BAEs. The non-string states
thus obtained are characterized by a set of pairs (a, f) of exponents with
the use of the scaling analysis in Section 5. In Appendix A, we count the
number of all the two-magnon bound states including the non-string states.
Appendix B is devoted to a proof of Theorem 5 which gives a mathematical
foundation of a numerical multifractal analysis of wavefunctions.

2. BETHE ANSATZ FOR TWO MAGNONS

We begin with a brief review of the Bethe Ansatz (BA) for two
magnons. By using the BA method, the eigenvalue problem of the spin-1/2
XXZ Hamiltonian (1.1) is reduced to solving a set of algebraic equations
called the Bethe-Ansatz equations (BAEs). Some of the solutions of the
BAEs must be obtained by a delicate limiting procedure.4 For treating this
problem, it is convenient to impose twisted boundary conditions(11,12)

instead of the periodic boundary conditions (1.2) as follows:

where cj
+ =(c j

x±ic j
y)/2, and s is a small positive parameter.5 Clearly, in

the limit e |0 , we recover the Hamiltonian (1.1) with the periodic boundary
conditions (1.2).

We focus on the two-magnon states given by linear combinations of
the base vectors

for 1 < y1 < y2 < N, where || • • • | > stands for the state with all the spins
up. The Bethe states are given by

with

4 See Remark 6 at the end of Appendix A, and refs. 1,10, and 11.
5 Our results about "quasi-bound" states are valid also for e = 0.
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and with the two-magnon scattering amplitude

The complex numbers z1 and z2 are determined by the BAEs

The energy eigenvalue is given by

The completeness of the two-magnon Bethe states (2.3) was proved in ref. 11.
Since the Bethe state (2.3) satisfies p ( z 2 , z 1 ) = A ( z 2 , z 1 ) p ( z 1 , z 2 ) , we

can take |z1 | >|z2| without loss of generality. From (2.6) and (2.7), one
has

with n = 0, 1,..., (N— 1). Therefore we can classify all the roots of the BAEs
for finite N as

3. TYPE-I STATES: SCATTERING STATES

Let us consider the type-I roots, which lead to two-magnon scattering
states. The complex numbers z1 and z2 of type I can be written

in terms of real quasi-wavenumbers k1 and k2. The scattering amplitude
(2.5) can be written
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where K=(k2 + k1) and k = (k2 — k1), and d is the phase shift, which is
real. By substituting (3.1) and (3.2) into (2.4), we have

Clearly this state is a scattering state of two magnons. We define the
wavefunction of the scattering state by

for 1 ==: y < N.
As is well known, all the roots of the BAEs for the XY model with

A = 0 are of type-I. In fact, we get |z1 | = |z2| from the BAEs (2.6) and (2.7)
with A = 0. More generally all the energy eigenstates are scattering states.
This is a consequence of the equivalence between the XY chain and a one-
dimensional free fermion model.

Let us give concrete examples of the type-I roots, which we will use for
a demonstration in Section 5. Take E = 0, A = 1 and N = 4m + 1 with
m=1, 2,.... Then we get the solution

where l is an integer. The corresponding wavefunction is

To show this, we introduce the so-called rapidities

Then the BAEs (2.6) and (2.7) are written

By taking logarithm, we have
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with integers I1 and I2. We choose I1 = — I2 = l. Then we can take
L1 = -L2 = L. As a result, the equations (3.10) and (3.11) become

Consequently we get the solutions L = tan[pl/(yN- 1)], which are identical
to the desired solutions (3.5), with (3.1) and (3.7).

4. TYPE-II STATES: BOUND STATES

Next we consider the type-II roots of the BAEs, which lead to two-
magnon bound states. These states are further classified into the so-called
"string states", and "non-string states". The latter contains "quasi-bound"
states, and "quasi-scattering" states, which are of main interest in the pre-
sent paper. The following lemma is useful for studying these type-II states.

Lemma 1. A root (z1 , z2) satisfying the type-II condition |z1 | > 1 >
|z2| can be expressed as (z1 , z2) = (exp[iu + v], exp[iu-v]) in terms of
v.0 and u = ( p r - e ) / N ( r = 0 , 1 , . . . , ( 2 N - 1 ) ) .

Proof. From (2.9), we can set z1 =exp[iu1 + v] and z2 = exp[iu2 — v]
with v > 0 and u1 € [0, 2p), u2 e [0, 2p). The energy (2.8) must be real and
Im(Z 1 +z 1

- 1 +z2 + z 2
- 1 ) = 0. Combining this with the above parametriza-

tion, we get sin u1=sin u2. This implies u1=u2 = u, u 1 +u 2 = p or u1+
u2 = 3p. But, from (2.9), z1z2= - 1 for a small e, and we have u1 = u2 = u.
Further, combining this with (2.9), we obtain the desired result u=
( p r - e ) / N ( r = 0,1,.. . ,2N-1). |

Note that for a type-II root (z1, z2), we get

by using Lemma 1 for the left-hand side of the BAE (2.7). Here the signs
+ correspond to r = even and odd in Lemma 1, respectively. Substitute
(4.1) into (2.4) with (2.5), then we get
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These states are nothing but the bound states obtained approximately by
Bethe.(1) We define the wavefunction of the bound state by

and for 1 < y < N/2. Here we have restricted the range of y to half of the
whole range, because the wavefunctions (4.3) are symmetric or antisym-
metric under the reflection y - > y ' = N—y. All the wavefunctions decay
exponentially as Y b ( y ) ~ e - v y for large distances y < N / 2 between two
magnons under the following assumption.

Standard Assumption 2. The parameter v for the type-II roots is
bounded from below by a positive constant v0 which is independent of the
number of the sites N.

Under this assumption, one gets the well-known string solutions (4.6)
below for two-magnon bound states.(1,3) The assumption, however, does
not necessarily hold as Vladimirov(5) pointed out. In this paper, we do not
assume the above Standard Assumption 2.

4.1. String States

We briefly review the relation between Standard Assumption 2 and the
string hypothesis.(1-3) For simplicity, we treat only the case with A = \.

Consider a type-II root (z1, z2) = (eiu +v , e i u - r ) . Clearly z 1 =(z 2 ) - 1

holds. Combining this with the representation

in terms of the rapidities yj(j= 1, 2), we have

On the other hand, under Standard Assumption 2 and with (4.1), we have6

z1z2 — 2z2 + 1 = O(e~cN) with a positive constant c which is independent of

6 Below we use the symbol O for expressing the order of a number.
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the number of the sites N. This can be written as A1 — A2 —2i = O(e -cN).
From this and (4.5), we have

where A' is a real number. This is nothing but the string hypothesis for the
two-magnon Bethe states. Thus we have the string solutions (4.6) under
Standard Assumption 2.

Theorem 3. Let |A| > 1. Then all the type-II roots (2.11) are of the
string form (4.6).

Proof. BAEs (2.6) and (2.7) for type-II roots (2.11) can be written

in terms of the parameters u and in Lemma 1, where the signs +
correspond to r = even, and odd, respectively. For the right-hand side, one
can easily get the bounds

and

Therefore, if v -> 0 as .N-> co, then the right-hand side of (4.7) tends to one.
But, for the left-hand side of (4.7), we have |A-1cos u| < 1from the
assumption |A| > 1. This implies that Standard Assumption 2 holds. As we
showed in the above, Standard Assumption 2 leads to the string form
(4.6). |

4.2. Non-String States

Consider the case where some type-II solutions do not satisfy
Standard Assumption 2. In general one cannot distinguish a bound state
from scattering states for a finite system. Because of a similar reason, one
cannot distinguish a non-string state from string states for a finite N. In the
following, we consider only a large-N behavior of solutions (u, v) of (4.7).
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From Lemma 1, the parameter u takes an order between O(1 /N) and 0(1).
For a given order of u, the corresponding order of v is determined by (4.7).
Then, if v-> O as N-> co, we call such pairs (u,v ) of solutions as "non-
string solutions," and the corresponding Bethe states as "non-string states".
Moreover we restrict u to those having asymptotic forms7 u~bN -p, where
b is a real constant, and Pe [0, 1]. Of course, there exists a different type
of asymptotic forms, such as u~bN -P log N. But such corrections to the
power law do not affect results of the scaling analysis as we will show in
Section 5.2.1. Thus the scaling property of all the non-string states are
represented by those of the solutions (u, v) with the power law.

From the well-known results8 for the XY model (A = 0) and Theorem 3,
non-string solutions appear only in the cases with 0 < |A|< 1. In addition we
have only to consider the cases with a positive A because the left-hand side
of (4.7) changes the sign as — A - 1 c o s u' under the transformation u =
n + u' = n + (nr' — e)/N with r' = 0, 1,..., ( 2 N — 1). Thus we will consider
only the cases with 0 < A < 1. The existence of the non-string solutions
gives a caution to the string hypothesis. The non-string states can be
further classified into the two types of classes, "quasi-bound" and "quasi-
scattering" states as we shall show below. All the results in this section are
summarized in Table I.

7 Below we use the symbol ~ for expressing an asymptotic behavior.
8 See Section 3.

Table 1. The Large-A/ Behavior of the Solutions (u, v) of (4.7) for the
Non-string Bound States"

( i )
( i i )

(iii-a)

(r = even)

(iii-b)

(r = even)

(iv-a)

(r = odd)

(iv-b)

(r = odd)

(v)

A

A = 1

0<A <1

A = 1

A = 1

A = 1

A= 1

0<A < 1

u

~bN - 1 , 2

~arccos A + b'N -y

~bN-(y-1,2)

~bN-1/2

~2N-1/2 + b'N-2(y-3/4)

~bN-1/2

~arccos A + b'N - 1

range of y

0<y <1
0 < y < 1

1 < y < 3/2

7=1

1 < y <= 5/4

y = 1

y = 1

a We express v ~ a N - y in terms of y with a positive constant a. The classification is the same
as in Section 4.2. b and b' are constants.
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4.2.1. "Quasi-Bound" States. Consider non-string solutions
(u, v) satisfying the conditions v-> 0 and Nv->co as N-> co. Then the
corresponding wavefunction (4.3) becomes

for a large N, and 1 < y < N/2. When we restrict u to those with u ~ bN -P

as mentioned above, all the corresponding solutions v can be expressed as
v ~ a N - y with a positive constant a and y e(0, 1) as we will show below.
Then the wavefunction (4.10) is extended over a range y less than or equal
to the order of Ny. But the wavefunction decays rapidly in the outside of
the range. Thus the wavefunction is unnormalizable in the thermodynamic
limit N-> co, but it is not extended over the whole range. In this sense, we
say that the wavefunction is a "quasi-bound state".

Let us obtain these typical "quasi-bound" solutions which give the
complete list of the scaling indices a and / for all the quasi-bound states.
For this purpose we divide the range of A into the following two cases;
(i) A = 1, and (ii) 0< A <1.

Case (i): A = \. The left-hand side of (4.7) can be expanded as

because u must satisfy the condition that u->0 as N-> co, which can be
seen in the proof of Theorem 3.

On the other hand, the right-hand side of (4.7) can be expanded as9

from the assumption Nv-> co as N-> co. Combining this with (4.11), we
have v~ u2/2. Therefore we get v~aN-y and u ~ b N - y / 2 with y e(0, 1)
from the assumptions that v ->0 and Nv -> co as N-> co.

Case (ii): 0 < A < 1. We write u in Lemma 1 as u = u0 + u1, where

Here r0 and r1 are integers, and we choose r0 and Su such that
A-1 cos u0 = 1 and du = O(1 /N) . As in the above Case (i), u1 must satisfy

9 Below we use the symbol ~ when an expression is an approximation, but gives a correct
asymptotic behavior.
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the condition limN->co u1=0. Then the left-hand side of (4.7) can be
expanded as

Therefore we have v ~ -jA -2 — 1 u1 = /A -2 — 1(u — arc cos A) in the same
way as in the case (i) above. Since we can assume u1 ~b'N -P with a real
constant b' and Pe [0, 1] as well as u, we obtain v~aN -y and u~
arccos A + b'N -y with y e (0, 1).

In both of the above two cases we obtain v ~ aN -y with y e (0, 1) and
a positive constant a, although u has the different ranges of the orders.

4.2.2. "Quasi-Scattering" States. Next we consider solutions
(u,v) satisfying Nv -> 0 as .N-> co or v~aN -1 with a positive constant a.
The corresponding states are classified into four types of states (4.15),
(4.18), (4.21), and (4.26) below. Although all of these states are extended
in the usual sense, we call them "quasi-scattering" states to distinguish
them from the usual two-magnon scattering states (3.4). In order to get all
these quasi-scattering states, we divide the present case into the following
five cases; (iii-a), (iii-b), (iv-a), (iv-b), and (v). Here the cases iii) and (iv)
are devoted to A — 1, and (v) to 0 < A < 1. The difference between (iii) and
(iv) is due to r = even and odd. We further have subdivided the cases (iii)
and (iv) into the two cases (a) and (b), by using a difference between
asymptotic behaviors of v. These five cases yield the complete list of all the
quasi-scattering states.

Case (iii-a): A = 1 and r = even. Consider first the case that Nv -> 0
as N-> co. Clearly the corresponding wavefunction (4.3) becomes

for a large N, and 1 < y < N/2. Thus the wavefunction becomes homoge-
neous in the large-N limit.

Next consider the equation (4.7) with r even. For the right-hand side,
we use a large-N expansion as
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Combining this with the expansion (4.11) for the left-hand side, we get
v~N -1/2u. Assuming u~bN -P with P e[0, 1], we obtain v ~ aN -y and
u~bN -(y -1/2) with y e (1,3/2]. For ye [1/2, 1], there is no solution v
ratifying Nv -»0 as N-> co.

Case (iii-b): A=1 and r = even. Next we consider the case that
v~aN -1. Then the corresponding wavefunction (4.3) becomes

for a large N, and 1 < y < N/2. Here x = 2y/N e [0, 1 ] for a large N. This
wavefunction is also extended over the whole range.

To show this, it is sufficient to prove that there exists a corresponding
solution u of (4.7) with r even. For this purpose we expand the right-hand
side of (4.7) with r even as

Thus we can find a solution u~bN -1/2 from the expansion (4.11) for a
small u.

Case (iv-a): A = 1 and r = odd. Consider first the case that Nv->0
as N-> co. Then the corresponding wavefunction (4.3) becomes

for a large N, and 1< y < N/2. Here x = 2y/N e [0, 1] for a large N.
Although this wavefunction is extended over the whole range, it exhibits
the strange behavior for large y.

Consider the equation (4.7) with r odd to find the corresponding solu-
tions (u, v) to the result (4.21). Note that



Quasi-Bound States of Two Magnons in Spin-1 XXZ Chain 757

for the right-hand side of (4.7) with r odd. For the left-hand side of (4.7),
we recall the expression u = uO + u1 with

We choose r0 and du such that cos u0 = 1 — 2/N and du = O(1/N). Then the
left-hand side of (4.7) with A = 1 can be expanded as

for a small u1. From (4.22) and (4.24), we have

Similar to Case (ii), we can assume u1 ~b'N -P with P e [0, 1 ]. Combining
this with (4.25), we obtain v sin aN -y and u sin 2N -1/2 + b'N -2(y-3/4) with
y e (1, 5/4 ]. For y e [ 3/4, 1 ], there is no solution satisfying Nv -»0 as N -> co.

Case (iv-b): A = 1 and r = odd. Next we consider the case with
v~aN -1. Clearly the corresponding wavefunction (4.3) becomes

for a large N, and 1 < y < N/2. Here x = 2y/N e [0,1 ] for a large N. This
wavefunction is also extended over the whole range.

Similar to Case (iii-b), it is sufficient to show that there exists a corre-
sponding solution u. We expand the right-hand side of (4.7) with r odd as
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Thus we can find a solution u~bN -1/2 from the expansion (4.11) for a
small u.

Case (v): 0 < A <1 and r = even, or odd. In the same way as in
Case (ii), one can easily show that there appears only one type of solutions
v sin aN-1 and u sin arccos A + b'N -1. Therefore the corresponding wave-
functions are (4.18), and (4.26) for r = even, and odd, respectively.

Consequently we obtained all the typical non-string states which give
the complete list of all the scaling indices a and / for all the non-string
states.

5. SCALING ANALYSIS FOR THE WAVEFUNCTIONS

Let us characterize the Bethe states by using the scaling analysis (the
multifractal analysis).7.13 Our main interest in this section is how the non-
string states, in particular, the quasi-bound states, are distinguished from
other usual scattering and usual bound states (string states). We begin with
a brief review of the scaling analysis for wavefunctions.

5.1. GENERAL CONSIDERATIONS

Usually infinite-volume states are classified into localized, extended and
critical states. Whereas localized states are normalizable, both extended
and critical states are not. The corresponding energy spectra are, respec-
tively, point-like, absolutely continuous, and singular continuous.14 The
scaling analysis is a very powerful method to characterize a wavefunction.
Actually the method has been proved to be very successful in the elucida-
tion of wavefunction structures and spectral properties in one-dimensional
quasi-periodic systems.7 In the language of the scaling analysis, the above
three types of states are distinguished clearly by the set {(a, f )} of pairs of
the scaling indices a and /, which we will introduce in this section. In the
present context, we focus on the question how the wavefunctions of the
spin-1/2 XXZ chain are classified by the scaling analysis.

Consider a wavefunction defined on a one-dimensional lattice A with
a periodic boundary condition. We take a scaling limit of a sequence of
the lattices {An} so that the wavefunctions we consider are defined on a
continuous interval [0, 1 ] in the limit n -» co. In the nth step of the scaling,
the system is periodic with a period N n=|A n | . Consider a probability
measure
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for a wavefunction Yi at site i e An, and with a normalization

Assign a uniform Lebesgue measure ln = Nn
-1 to all the sites in the lattice An.

Then the whole Lebesgue measure of the system An is normalized to unity.
In the limit n -> co, the probability measure is defined on the interval [0, 1 ],
and one can discuss its singularities and scaling properties.

For an example, see Fig. 1 where a probability measure pi for a
normalized wavefunction is shown in each step of the scaling.10 Let us fix
a sequence of lattice sizes Nn by the relation Nn = enen for n = 1, 2, 3,....
Then the Lebesgue measure ln can be written in the scaling form

where £„ is usually called scaling index. We take en to be constant in the
merical analysis11 for the Bethe wavefunctions in Section 5.3.

Before introducing our strategy for calculating the indices a and f, we
explain a standard strategy, although the standard one is not well-defined
and not useful for a numerical analysis. Let us define the scaling index ai

by

Further we define by £ n ( a ) da. the number of sites having index ai e
[a, a + da.) with a small positive da. Then one can expect that there exist
an index f(a) and a measure p(a) such that

for a sufficiently large system size «. If the measure p(a) is non-zero and
non-singular, then one can define the entropy function S(a) in the thermo-
dynamic limit as

Here we have used (5.3), and written £ = limn->co en under the assumption
of the existence of the limit. But we cannot justify the above assumption

10 See, for details, Section 5.3.
11 In general £n is not necessarily constant [7].

822/88/3-4-15



Fig. 1. Probability distribution for the normalized wavefunctions of Example B [(4.26) in
Case (iv-b) in Section 4.2].
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Fig. 1 (Continued)



12 The function Dq,
(15) which is often used by the authors, is related to our free energy G(q)

by Dq = — G(q)/[E(q— 1)]. Since Dq|q=0 is equal to the Hausdorff dimension of the space,
the Dq is often called the generalized Hausdorff dimension. Of course, the formalism with
Dq is equivalent to ours.

with e = limn->co £ n ,and define the entropy S(q) as

We define the index a = a(q) as

with

and the free energy12

with

for the wavefunction, where d(a) is the Dirac's delta measure. Thus the
formula (5.6) is not necessarily useful for calculating an index f(a).

In order to avoid the difficulty, we introduce an analogue of the ther-
modynamic formalism in statistical mechanics for many-body systems. The
method is more useful for numerically computing scaling indices a and /

Let us define the "partition function" by

that p(a) is non-singular. The simplest counter-example is the homoge-
neous wavefunction yi = const. for all the sites i. In fact we have

Morita et al.762



with (5.12). This is not true. The second term £a(q) q in the right-hand side
of (5.17) is ill-defined when a = co at q = 0. In fact we encounter such a
situation for the Bethe wavefunctions in the present spin-1/2 XXZ chain.
We shall discuss this point again in Section 5.2.1. In order to avoid this dif-
ficulty, we introduced the definition (5.13) for the entropy S(q). Starting
from the definition (5.13), the entropy (5.17) can be fomally rederived in
the following way:

Clearly the index a(q) (5.12) is the expectation of a, with respect to the
"Gibbs measure" at the "temperature" q-1, and S(q) (5.813) is corresponding
to the entropy at the "temperature". Thus the indices a(q) and f(q) can
be interpreted as smeared indices a and / with "thermal fluctuation".
Varying the value of the inverse temperature q, one can get all the pairs
{ ( a ( q ) , f(q))} of indices for a given wavefunction y. For example, we can
get the desired pair (a,f ) = (1, 1) for the above homogeneous wave-
function yi = const. without any difficulty from the definitions (5.12), (5.13)
and (5.16).

We should remark the following: One may think that the definition
(5.13) of the entropy S(q) is equivalent to

The index f = f(q) is defined by

where the probability P i ( q ) is given by

with
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For example, an extended wavefunction has {(a,f )} containing a single
point (a , f) = (1, 1), and a localized wavefunction has {(a,f )} consisting
of two points; (a,f ) = (0,0) and (co, 1). For a critical wavefunction, the
set {(a,f )} forms a smooth curve with a finite range [amin, amax] of a in
the a—f plane and the maximum value of f is not at a = 1. Before applying
the scaling analysis to the Bethe wavefunctions of the spin-1/2 XXZ chain,
we emphasize the following point. The scaling analysis is often applied to
a finite system, and the set "{(a,f )}" for & finite system is obtained. The
result necessarily shows a smooth curve without an extrapolation. But the
set {(a, f )} in the thermodynamic limit n -> co does not necessarily gives a
smooth curve. Thus one must carefully extrapolate data of finite systems to
the infinite volume in order to obtain the set {(a, f )} numerically. We will
discuss this point again in Section 5.3, where numerical demonstrations are
performed in order to clarify the point.

5.2. Scaling Analysis for the Non-String States of
Two Magnons

Now we apply the scaling analysis to the non-string states obtained in
Section 4.2. The main results are as follows: we obtain that the set {(a, f )}
for the quasi-bound states (4.10) consists of two points, (a, f) = (y, y) and
(co, 1), with y e(0, 1). Clearly the set {(a, f )} is different from those for
extended and localized wavefunctions. But all the sets {(a, f )} for the
quasi-scattering states in Section 4.2.2 are the same as that for a usual
extended wavefunction as we already expected.

13 See Remark 4(ii) below.

A wavefunction is clearly characterized by the set

from the definitions of the partition function (5.8) with (5.9), and of the
free energy (5.11). But much care has to be taken since there often appears
a situation such that13

Thus we formally get (5.17) in the limit n -> co because we have

Morita et al.764
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5.2.1. (a, f ) for the Quasi-Bound States. Consider first the
quasi-bound states (4.10). In the following, we consider only the leading
order for a sufficiently large lattice size N, because one can show that
higher orders are all negligible.

Note that

from (4.10). Since v-0 as N-> co from the definition of the quasi-bound
states (4.10), the wavefunction is unnormalizable in the thermodynamic limit.
The normalized wavefunction is

The partition function (5.8) is

For q = 0, we have

Here we have used Nn = enen and £ = limn->coen . On the other hand, for
q = 0,

From these observations, the free energy is

where we have used the result v ~ aN -yx {correction} with a positive
constant a and y e (0, 1) in Section 4.2.1. Here we stress that corrections to
the power law v~aN -y, such as logarithm, do not affect the result of G(q).
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Further we have

where we have defined the derivative at q = 0 as

In a similar way we get

Combining this with (5.18) and (5.19), we have

This implies

from (5.16). Combining this with (5.28), we conclude that {(a, f )} for the
quasi-bound states (4.10) with y e (0, 1) consists of two points, (a,f ) =
( y , y ) and (co, 1).

Remark 4. (i) There is no need to consider a negative q because
a is a decreasing function of q satisfying14 a = co at q = 0.

(ii) Clearly, from the result (5.28), the present case is a non-trivial
example such that the definition (5.17) of the entropy function is ill-defined.
Thus q = 0 is a singular point, and one must carefully treat it. The discon-
tinuity of the free energy G(q) at q = 0 leads to a =co, not a = y! from
(5.30).

5.2.2. (a, f) for the Quasi-Scattering States. Next consider
the quasi-scattering states obtained in Section 4.2.2. One can easily show
that the set {(a, f )} of the wavefunction (4.15) consists of a single point

14 But indices a from negative q usually appear for critical states.(7)



Then the free energy is

and

The partition function (5.8) is

Here s is a real number such that the free energy G(s) is well-defined.
Hence the normalized wavefunction becomes

with

in terms of a smooth function g. Note that

(a, f ) = (1, 1). As we shall show, the same is true for the other wavefunc-
tions in Section 4.2.2. All the wavefunctions can be written in the form
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Further we have

where we have used the fact that g defined in (5.33) is a smooth function.
Combining this with (5.18) and (5.19), we get the entropy function

This implies f ( q ) = 1 from (5.16). With (5.39), we have that {(a, f )} for the
quasi-scattering states consists of a single point (a, f ) = (1, 1).

5.3. Scaling Analysis for the Two-Magnon States:
Numerical Demonstrations

As shown in Section 5.2, the free energies G(q) (S.27) for the quasi-
bound states are singular at q = 0. In such a situation, a numerical analysis
often yields enormous errors. One must carefully extrapolate data of finite
systems to an infinite volume. In this section, we make numerical
demonstrations for the two-magnon Bethe states, and compare the numeri-
cal results with the exact results in Section 5.2. We consider such a
demonstration is instructive and gives useful informations for future studies
where quasi-bound state appears but analytic results can not be obtained.

Before proceeding to concrete examples, we explain our numerical
method in a general setting. Consider first the index a given by (5.12). But
it is very hard to compute numerically the right-hand side of (5.12). In fact,
a numerical analysis often yields enormous errors. We take another way.
Define

Below we fix En = log 2 for all n. The an(q) is a smooth function of q for a
finite n. We further define

The following theorem is useful for a numerical analysis.
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Theorem 5. Suppose the existence of the scaling index a ( q ) at an
interier point q in a range of q. Then the limit a(q) of (5.43) exists, and

In Appendix B, we prove the statement of the theorem by using an analogy
between the present system and a system for statistical mechanics for
many-body systems(61) But such an analogy is not necessarily complete. In
fact, the free energies G(q) (5.27) for the quasi-bound states is discon-
tinuous at q = 0. We further remark that a exists everywhere except for a
countable number of points q, because of the convexity of the free energy
G(q).(16,17) In other words, the discontinuities of a form a set of the
Lebesgue measure zero on the range of q.

Relying on Theorem 5, we calculate a ( q ) . Namely we first compute
an(q) (5.42) for finite n, and extrapolate an(q) to a ( q ) in the limit n-> co.
We calculate the corresponding values of f ( q ) as follows. First we compute
fn(q) = Sn(q)/En for finite systems, where Sn(q) is given by (5.18). The set
(an

,fn) is always smooth for finite n. By extrapolating n-» + co, we get
(a, /). Our extrapolation method is as follows. Examples of the finite-size
effect on (an, fn) can be seen in Fig. 2, where we have plotted the minimum
value amin of an(q), the corresponding value f min of f n (q ) , the maximum
value amax of a n (q) , and the corresponding f max of fn(q) versus 1/n for the
wavefunction (3.6) with l/m = 0.9. Since the finite-size corrections seem to
be O(1/n), we determine the extrapolated values by using a least squares
fitting the form a + b/n to the data. Here a and b are parameters to be
determined.

Having the results in Sections 3 and 4 in mind, we have calculated
numerically {(a, f )} for the following four examples of wavefunctions.
Example A is a type-I wavefunction having (2.10), and Examples B, C and
D are type-II wavefunction having (2.11). The data and the results are
summarized in Table II. Let us proceed to the details of the four examples.

Example A: Usual Scattering States (Section 3)

For the scattering state (3.4), we treated the wavefunction y s ( y ) (3.6).
We fixed l/m = 0.9 so that the corresponding wavenumber k is constant.

Figure 3 shows the probability distribution | y s ( y ) | 2 for the wave-
function. As shown in Fig. 4, the set {(an, fn)} for a finite n always gives
a smooth curve. As shown in Fig. 5, a n (q ) seems to converge to a (y ) = 1
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Fig. 2. The minimum value amin of a n ( q ) , the corresponding value f min of fn(q), the maxi-
mum value amax of an(q), and the corresponding f max of fn(q) versus 1/n for the wavefunctions
(3.6) with l/m = 0.9 (Example A below). N = 2n = 401, 801, 1201, 1601. Straight lines are deter-
mined by using a least square fitting.



Fig. 3. Probability distribution for the normalized wavefunctions of Example A.

for all q as n -> co. Actually the maximum and the minimum values of a
converge to a = 1, and the corresponding {(a, f )} becomes a single point
as shown in Fig. 2. Thus we conclude that {(a, f )} consists of the single
point (a, f ) = (1, 1). This result {(a, f )} agrees with the fact that the
wavefunction is extended as clearly seen in Fig. 3.
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Table II. The Data and the Numerical Results for the Scaling Properties of the
Wavefunctions when A= 1

System size N = 2n character of wavefunction (a, f )

A: scattering state

[(3.6) with l/m = 0.9]

B: quasi-scattering state

[(4.26) in Case (iv-b)]

C: string bound state

[(4.3) with v ~ const., and r odd]

D: quasi-bound state

[(4.10) with y = 1/2, and r odd]

401, 801, 1201, 1601 extended

( 1 , 1 )

361, 441, 529, 625 extended

(1 , 1 )

365, 445, 525, 605 localized

(0,0), (co, 1)

256, 625, 1296 quasi bound

(0.5, 0.5), (co, 1)
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Example B: Quasi-Scattering States
[Case (iv-b) in Section 4.2.2]

Figure 1 shows the probability distribution for the wavefunction (4.26)
in Case (iv-b). Whether the wavefunction is extended or notes is not clear
from the figure. Similar to Example A, we found that {(a, f )} consists of
the single point (a, f) = (1, 1), although (an, fn) for a finite n is also

Fig. 5. an(q) for Example A.

Morita et al.

Fig. 4. (an , fn) for Example A.
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Fig. 6. Probability distribution for the normalized wavefunctions of Example C [(4.3) with
v ~ const., and r odd].



Fig. 6 (Continued)
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Fig. 7. an(q) for Example C.

Fig. 8. (an, fn) for Example C.

822/88/3-4-16



smooth. This agrees with the anaytic result in Section 5.2.2. Namely the
wavefunction is extended.

Example C: String Bound States (Section 4.1)

Figure 6 shows the probability distribution | y s b ( y ) | 2 for the wavefunc-
tion (4.3) with v ~ const. and r odd.

As shown in Fig. 7, an(q) converges to a(q) = 0 for 0 < q < co and the
point q = 0 is singular. The corresponding an(q) at q = 0 diverges to +00.
This singularity is reflected in the behavior of (an, fn) for finite « as seen
in Fig. 8.

Namely the maximum value of a diverges to + co. We also found
f ( q ) = 0 for 0 < q < co. These results agree with the fact that the wavefunc-
tion is localized as clearly seen in Fig. 6.

Example D: Quasi-Bound States [Case (i) in Section 4.2.1]

We choose y= 1/2 for the wavefunction (4.10) with r odd. Similar to
Example C, we obtain (a, f ) = (0.5, 0.5) for 0 < q < co. The point q = 0 is
singular as seen in Fig. 9.

The corresponding an(q) at q = 0 diverges to +00. This singularity is
reflected in the behavior of (a, fn) for finite n as seen in Fig. 10.
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Fig. 9. an(q) for Example D [(4.10) with y = 1/2, and r odd].



Since A -1 cos[(nr-£)/N] changes the sign as -A -1 cos u' under the
transformation u = n + u' = n + (nr1 -e)/N with r1 = 0, 1,..., 2N- 1, we have

Therefore a solution (u, v) of (4.7) is uniquely determined for a fixed r in
the range

These results agree with the anaytic result for quasi-bound state in
Section 5.2.1.

APPENDIX A. STATE COUNTING

We shall count the number of all the type-II states, i.e., the number of
the solutions (u, v) of (4.7). Note that the right-hand side of (4.7) is a
monotonically decreasing function with respect to v for a fixed N. The func-
tion is vanishing as v -> co, and satisfies

Fig. 10. (an, fn) for Example D.
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As we showed in Theorem 3, when \A\ > 1, all the bound states are string
states. Thus the number nb(A) for |A| > 1 is equal to the number of the
string states. When 0 < |A| < 1, both of the string and the non-string states
appear as a bound state. The result (A.5) for A = 0 agrees with the result
for the XY chain.

Remark 6. When N = even and e = 0, the equation (4.7) has the
"solution" u = n/2 and v = co. Clearly the corresponding Bethe state (2.3)
with (z1 ,z2) = (eiu + v, e i u - v ) becomes ill-defined. Therefore the "solution"
is often excluded from the set of the Bethe states [18]. However the
two-magnon Bethe states without the "solution" is not complete. To
avoid this difficulty, use have introduced the small positive e into the
Hamiltonian of the spin-1/2 XXZ chain. Thereby there appear no such a
singular "solution", and the system of the Behte states is complete. See, for
details, ref. 11.

Thus the total number of the type-II states is

For r odd, the number n ( 0 )(A) of the type-II states is

only to consider the case with A > 0. From these observations the number
n ( e ) ( A ) of the type-II states for r even is
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APPENDIX B. PROOF OF THEOREM 5

We first show that the free energy Gn(q) (5.11) for a finite volume is
convex with respect to q. The free energy G(q) in the infinite-volume limit is
also convex because the convexity is retained for any limit. It can be shown that

where ui = nEnai, and

Thus Gn(q) is convex. Using this convexity, we have

for any positive Aq. Here we have used the assumption that q is an interier
point. In the limit n -> co, we get

from the assumption of Theorem 5. Further we take the limit Aq | 0. Then
we have

For a negative Aq,

In the same way, we get

Combining this with (B.5), we have
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Thus,

This implies (5.44), with the definitions (5.42) and (5.43). |
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